EE_Unit-III Waste Water Treatment

The principal objective of wastewater treatment is generally to allow human and industrial effluents to be disposed of without danger to human health or unacceptable damage to the natural environment. Irrigation with wastewater is both disposal and utilization and indeed is an effective form of wastewater disposal (as in slow-rate land treatment). However, some degree of treatment must normally be provided to raw municipal wastewater before it can be used for agricultural or landscape irrigation or for aquaculture. The quality of treated effluent used in agriculture has a great influence on the operation and performance of the wastewater-soil-plant or aquaculture system. In the case of irrigation, the required quality of effluent will depend on the crop or crops to be irrigated, the soil conditions and the system of effluent distribution adopted. Through crop restriction and selection of irrigation systems which minimize health risk, the degree of pre-application wastewater treatment can be reduced. A similar approach is not feasible in aquaculture systems and more reliance will have to be placed on control through wastewater treatment.

The most appropriate wastewater treatment to be applied before effluent use in agriculture is that which will produce an effluent meeting the recommended microbiological and chemical quality guidelines both at low cost and with minimal operational and maintenance requirements (Arar 1988). Adopting as low a level of treatment as possible is especially desirable in developing countries, not only from the point of view of cost but also in acknowledgement of the difficulty of operating complex systems reliably. In many locations it will be better to design the reuse system to accept a low-grade of effluent rather than to rely on advanced treatment processes producing a reclaimed effluent which continuously meets a stringent quality standard.

Nevertheless, there are locations where a higher-grade effluent will be necessary and it is essential that information on the performance of a wide range of wastewater treatment technology should be available. The design of wastewater treatment plants is usually based on the need to reduce organic and suspended solids loads to limit pollution of the environment. Pathogen removal has very rarely been considered an objective but, for reuse of effluents in agriculture, this must now be of primary concern and processes should be selected and designed accordingly (Hillman 1988). Treatment to remove wastewater constituents that may be toxic or harmful to crops, aquatic plants (macrophytes) and fish is technically possible but is not normally economically feasible. Unfortunately, few performance data on wastewater treatment plants in developing countries are available and even then they do not normally include effluent quality parameters of importance in agricultural use.

The short-term variations in wastewater flows observed at municipal wastewater treatment plants follow a diurnal pattern. Flow is typically low during the early morning hours, when water consumption is lowest and when the base flow consists of infiltration-inflow and small quantities of sanitary wastewater. A first peak of flow generally occurs in the late morning, when wastewater from the peak morning water use reaches the treatment plant, and a second peak flow usually occurs in the evening. The relative magnitude of the peaks and the times at which they occur vary from country to country and with the size of the community and the length of the sewers. Small communities with small sewer systems have a much higher ratio of peak flow to average flow than do large communities. Although the magnitude of peaks is attenuated as wastewater passes through a treatment plant, the daily variations in flow from a municipal treatment plant make it impracticable, in most cases, to irrigate with effluent directly from the treatment plant. Some form of flow equalization or short-term storage of treated effluent is necessary to provide a relatively constant supply of reclaimed water for efficient irrigation, although additional benefits result from storage.

Conventional wastewater treatment processes


1 Preliminary treatment
2 Primary treatment
3 Secondary treatment
4 Tertiary and/or advanced treatment
5 Disinfection
6 Effluent storage
7 Reliability of conventional and advanced wastewater treatment


Conventional wastewater treatment consists of a combination of physical, chemical, and biological processes and operations to remove solids, organic matter and, sometimes, nutrients from wastewater. General terms used to describe different degrees of treatment, in order of increasing treatment level, are preliminary, primary, secondary, and tertiary and/or advanced wastewater treatment. In some countries, disinfection to remove pathogens sometimes follows the last treatment step. A generalized wastewater treatment diagram is shown in Figure 5.

1 Preliminary treatment

The objective of preliminary treatment is the removal of coarse solids and other large materials often found in raw wastewater. Removal of these materials is necessary to enhance the operation and maintenance of subsequent treatment units. Preliminary treatment operations typically include coarse screening, grit removal and, in some cases, comminution of large objects. In grit chambers, the velocity of the water through the chamber is maintained sufficiently high, or air is used, so as to prevent the settling of most organic solids. Grit removal is not included as a preliminary treatment step in most small wastewater treatment plants. Comminutors are sometimes adopted to supplement coarse screening and serve to reduce the size of large particles so that they will be removed in the form of a sludge in subsequent treatment processes. Flow measurement devices, often standing-wave flumes, are always included at the preliminary treatment stage.

2 Primary treatment

The objective of primary treatment is the removal of settleable organic and inorganic solids by sedimentation, and the removal of materials that will float (scum) by skimming. Approximately 25 to 50% of the incoming biochemical oxygen demand (BOD5), 50 to 70% of the total suspended solids (SS), and 65% of the oil and grease are removed during primary treatment. Some organic nitrogen, organic phosphorus, and heavy metals associated with solids are also removed during primary sedimentation but colloidal and dissolved constituents are not affected. The effluent from primary sedimentation units is referred to as primary effluent. Table 1 provides information on primary effluent from three sewage treatment plants in California along with data on the raw wastewaters.

Table 1: QUALITY OF RAW WASTEWATER AND PRIMARY EFFLUENT AT SELECTED TREATMENT PLANTS IN CALIFORNIA

Quality parameters (mg/l, except as otherwise indicated)

City of Davis

San Diego

Los Angeles County Joint Plant

Raw wastewater

Primary effluent

Raw wastewater

Primary effluent

Raw wastewater

Primary effluent

Biochemical oxygen demand,BOD5

112

73

184

134

204

Total organic carbon

63.8

40.6

64.8

52.3

Suspended solids

185

72

200

109

219

Total nitrogen

43.4

34.7

NH3-N

35.6

26.2

21.0

20.0

39.5

NO-N

0

0

Org-N

7.8

8.5

14.9

Total phosphorus

7.5

10.2

11.2

Ortho-P

7.5

11.2

pH (unit)

7.7

7.3

7.3

Cations:
Ca

78.8

Mg

25.6

Na

357

359

K

19

19

Anions:
SO4

160

270

Cl

120

397

Electrical conductivity, dS/m

2.52

2.34

2.19

Total dissolved solids

829

821

1404

1406

Soluble sodium percentage, %

70.3

Sodium adsorption ratio

8.85

6.8

Boron (B)

1.68

1.5

Alkalinity (CaCO3)

322

332

Hardness (CaCO3)

265

In many industrialized countries, primary treatment is the minimum level of preapplication treatment required for wastewater irrigation. It may be considered sufficient treatment if the wastewater is used to irrigate crops that are not consumed by humans or to irrigate orchards, vineyards, and some processed food crops. However, to prevent potential nuisance conditions in storage or flow-equalizing reservoirs, some form of secondary treatment is normally required in these countries, even in the case of non-food crop irrigation. It may be possible to use at least a portion of primary effluent for irrigation if off-line storage is provided.

Primary sedimentation tanks or clarifiers may be round or rectangular basins, typically 3 to 5 m deep, with hydraulic retention time between 2 and 3 hours. Settled solids (primary sludge) are normally removed from the bottom of tanks by sludge rakes that scrape the sludge to a central well from which it is pumped to sludge processing units. Scum is swept across the tank surface by water jets or mechanical means from which it is also pumped to sludge processing units.

In large sewage treatment plants (> 7600 m3/d in the US), primary sludge is most commonly processed biologically by anaerobic digestion. In the digestion process, anaerobic and facultative bacteria metabolize the organic material in sludge (see Example 3), thereby reducing the volume requiring ultimate disposal, making the sludge stable (nonputrescible) and improving its dewatering characteristics. Digestion is carried out in covered tanks (anaerobic digesters), typically 7 to 14 m deep. The residence time in a digester may vary from a minimum of about 10 days for high-rate digesters (well-mixed and heated) to 60 days or more in standard-rate digesters. Gas containing about 60 to 65% methane is produced during digestion and can be recovered as an energy source. In small sewage treatment plants, sludge is processed in a variety of ways including: aerobic digestion, storage in sludge lagoons, direct application to sludge drying beds, in-process storage (as in stabilization ponds), and land application.

3 Secondary treatment

The objective of secondary treatment is the further treatment of the effluent from primary treatment to remove the residual organics and suspended solids. In most cases, secondary treatment follows primary treatment and involves the removal of biodegradable dissolved and colloidal organic matter using aerobic biological treatment processes. Aerobic biological treatment (see Box) is performed in the presence of oxygen by aerobic microorganisms (principally bacteria) that metabolize the organic matter in the wastewater, thereby producing more microorganisms and inorganic end-products (principally CO2, NH3, and H2O). Several aerobic biological processes are used for secondary treatment differing primarily in the manner in which oxygen is supplied to the microorganisms and in the rate at which organisms metabolize the organic matter.

High-rate biological processes are characterized by relatively small reactor volumes and high concentrations of microorganisms compared with low rate processes. Consequently, the growth rate of new organisms is much greater in high-rate systems because of the well controlled environment. The microorganisms must be separated from the treated wastewater by sedimentation to produce clarified secondary effluent. The sedimentation tanks used in secondary treatment, often referred to as secondary clarifiers, operate in the same basic manner as the primary clarifiers described previously. The biological solids removed during secondary sedimentation, called secondary or biological sludge, are normally combined with primary sludge for sludge processing.

Common high-rate processes include the activated sludge processes, trickling filters or biofilters, oxidation ditches, and rotating biological contactors (RBC). A combination of two of these processes in series (e.g., biofilter followed by activated sludge) is sometimes used to treat municipal wastewater containing a high concentration of organic material from industrial sources.

i. Activated Sludge

In the activated sludge process, the dispersed-growth reactor is an aeration tank or basin containing a suspension of the wastewater and microorganisms, the mixed liquor. The contents of the aeration tank are mixed vigorously by aeration devices which also supply oxygen to the biological suspension . Aeration devices commonly used include submerged diffusers that release compressed air and mechanical surface aerators that introduce air by agitating the liquid surface. Hydraulic retention time in the aeration tanks usually ranges from 3 to 8 hours but can be higher with high BOD5 wastewaters. Following the aeration step, the microorganisms are separated from the liquid by sedimentation and the clarified liquid is secondary effluent. A portion of the biological sludge is recycled to the aeration basin to maintain a high mixed-liquor suspended solids (MLSS) level. The remainder is removed from the process and sent to sludge processing to maintain a relatively constant concentration of microorganisms in the system. Several variations of the basic activated sludge process, such as extended aeration and oxidation ditches, are in common use, but the principles are similar.

ii. Trickling Filters

A trickling filter or biofilter consists of a basin or tower filled with support media such as stones, plastic shapes, or wooden slats. Wastewater is applied intermittently, or sometimes continuously, over the media. Microorganisms become attached to the media and form a biological layer or fixed film. Organic matter in the wastewater diffuses into the film, where it is metabolized. Oxygen is normally supplied to the film by the natural flow of air either up or down through the media, depending on the relative temperatures of the wastewater and ambient air. Forced air can also be supplied by blowers but this is rarely necessary. The thickness of the biofilm increases as new organisms grow. Periodically, portions of the film ‘slough off the media. The sloughed material is separated from the liquid in a secondary clarifier and discharged to sludge processing. Clarified liquid from the secondary clarifier is the secondary effluent and a portion is often recycled to the biofilter to improve hydraulic distribution of the wastewater over the filter.

iii. Rotating Biological Contactors

Rotating biological contactors (RBCs) are fixed-film reactors similar to biofilters in that organisms are attached to support media. In the case of the RBC, the support media are slowly rotating discs that are partially submerged in flowing wastewater in the reactor. Oxygen is supplied to the attached biofilm from the air when the film is out of the water and from the liquid when submerged, since oxygen is transferred to the wastewater by surface turbulence created by the discs’ rotation. Sloughed pieces of biofilm are removed in the same manner described for biofilters.

High-rate biological treatment processes, in combination with primary sedimentation, typically remove 85 % of the BOD5 and SS originally present in the raw wastewater and some of the heavy metals. Activated sludge generally produces an effluent of slightly higher quality, in terms of these constituents, than biofilters or RBCs. When coupled with a disinfection step, these processes can provide substantial but not complete removal of bacteria and virus. However, they remove very little phosphorus, nitrogen, non-biodegradable organics, or dissolved minerals. Data on effluent quality from selected secondary treatment plants in California are presented in Table 2.

Table 2: QUALITY OF SECONDARY EFFLUENT AT SELECTED WASTEWATER TREATMENT PLANTS IN CALIFORNIA

Quality parameter (mg/I except as otherwise indicated)

Plant location

Trickling filters

Activated sludge

Chino Basin MWD (No. 1)

Chino Basin MWD (No. 2)

Santa Rosa Laguna

Montecito Sanitary District

Biochemical oxygen demand, BOD5

21

8

11

Chemical oxygen demand

27

Suspended solids

18

26

13

Total nitrogen

NH3-N

25

11

10

1.4

NO3-N

0.7

19

8

5

Org-N

1.7

Total phosphorus

12.5

Ortho-P

3.4

pH (unit)

7.6

Cations:
Ca

43

55

41

82

Mg

12

18

18

33

Na

83

102

94

K

17

20

11

Anions:
HCO3

293

192

165

SO4

85

143

66

192

Cl

81

90

121

245

Electrical conductivity dS/m

1.39

Total dissolved solids

476

591

484

940

Sodium adsorption ratio

2.9

3.1

3.9

3.7

Boron (B)

0.7

0.6

0.6

0.7

Alkalinity (CaCO3)

226

Total Hardness (CaCO3)

156

200

175

265

Source: Asano and Tchobanoglous (1987)

4 Tertiary and/or advanced treatment

Tertiary and/or advanced wastewater treatment is employed when specific wastewater constituents which cannot be removed by secondary treatment must be removed. As shown in Figure 3, individual treatment processes are necessary to remove nitrogen, phosphorus, additional suspended solids, refractory organics, heavy metals and dissolved solids. Because advanced treatment usually follows high-rate secondary treatment, it is sometimes referred to as tertiary treatment. However, advanced treatment processes are sometimes combined with primary or secondary treatment (e.g., chemical addition to primary clarifiers or aeration basins to remove phosphorus) or used in place of secondary treatment (e.g., overland flow treatment of primary effluent).

An adaptation of the activated sludge process is often used to remove nitrogen and phosphorus and an example of this approach is the 23 Ml/d treatment plant commissioned in 1982 in British Columbia, Canada (World Water 1987). The Bardenpho Process adopted is shown in simplified form in Figure 6. Effluent from primary clarifiers flows to the biological reactor, which is physically divided into five zones by baffles and weirs. In sequence these zones are: (i) anaerobic fermentation zone (characterized by very low dissolved oxygen levels and the absence of nitrates); (ii) anoxic zone (low dissolved oxygen levels but nitrates present); (iii) aerobic zone (aerated); (iv) secondary anoxic zone; and (v) final aeration zone. The function of the first zone is to condition the group of bacteria responsible for phosphorus removal by stressing them under low oxidation-reduction conditions, which results in a release of phosphorus equilibrium in the cells of the bacteria. On subsequent exposure to an adequate supply of oxygen and phosphorus in the aerated zones, these cells rapidly accumulate phosphorus considerably in excess of their normal metabolic requirements. Phosphorus is removed from the system with the waste activated sludge.

 

Most of the nitrogen in the influent is in the ammonia form, and this passes through the first two zones virtually unaltered. In the third aerobic zone, the sludge age is such that almost complete nitrification takes place, and the ammonia nitrogen is converted to nitrites and then to nitrates. The nitrate-rich mixed liquor is then recycled from the aerobic zone back to the first anoxic zone. Here denitrification occurs, where the recycled nitrates, in the absence of dissolved oxygen, are reduced by facultative bacteria to nitrogen gas, using the influent organic carbon compounds as hydrogen donors. The nitrogen gas merely escapes to atmosphere. In the second anoxic zone, those nitrates which were not recycled are reduced by the endogenous respiration of bacteria. In the final re-aeration zone, dissolved oxygen levels are again raised to prevent further denitrification, which would impair settling in the secondary clarifiers to which the mixed liquor then flows.

An experimentation programme on this plant demonstrated the importance of the addition of volatile fatty acids to the anaerobic fermentation zone to achieve good phosphorus removal. These essential short-chain organics (mainly acetates) are produced by the controlled fermentation of primary sludge in a gravity thickener and are released into the thickener supernatent, which can be fed to the head of the biological reactor. Without this supernatent return flow, overall phosphorus removal quickly dropped to levels found in conventional activated sludge plants. Performance data over three years have proved that, with thickener supernatent recycle, effluent quality median values of 0.5-1.38 mg/l Ortho-P, 1.4-1.6 mg/l Total nitrogen and 1.4-2.0 mg/l nitrate-N are achievable. This advanced biological wastewater treatment plant cost only marginally more than a conventional activated sludge plant but nevertheless involved considerable investment. Furthermore, the complexity of the process and the skilled operation required to achieve consistent results make this approach unsuitable for developing countries.

In many situations, where the risk of public exposure to the reclaimed water or residual constituents is high, the intent of the treatment is to minimize the probability of human exposure to enteric viruses and other pathogens. Effective disinfection of viruses is believed to be inhibited by suspended and colloidal solids in the water, therefore these solids must be removed by advanced treatment before the disinfection step. The sequence of treatment often specified in the United States is: secondary treatment followed by chemical coagulation, sedimentation, filtration, and disinfection. This level of treatment is assumed to produce an effluent free from detectable viruses. Effluent quality data from selected advanced wastewater treatment plants in California are reported in Table 14. In Near East countries adopting tertiary treatment, the tendency has been to introduce pre-chlorination before rapid-gravity sand filtration and post-chlorination afterwards. A final ozonation treatment after this sequence has been considered in at least one country.

5 Disinfection

Disinfection normally involves the injection of a chlorine solution at the head end of a chlorine contact basin. The chlorine dosage depends upon the strength of the wastewater and other factors, but dosages of 5 to 15 mg/l are common. Ozone and ultra violet (uv) irradiation can also be used for disinfection but these methods of disinfection are not in common use. Chlorine contact basins are usually rectangular channels, with baffles to prevent short-circuiting, designed to provide a contact time of about 30 minutes. However, to meet advanced wastewater treatment requirements, a chlorine contact time of as long as 120 minutes is sometimes required for specific irrigation uses of reclaimed wastewater. The bactericidal effects of chlorine and other disinfectants are dependent upon pH, contact time, organic content, and effluent temperature.

6 Effluent storage

Although not considered a step in the treatment process, a storage facility is, in most cases, a critical link between the wastewater treatment plant and the irrigation system. Storage is needed for the following reasons:

i. To equalize daily variations in flow from the treatment plant and to store excess when average wastwater flow exceeds irrigation demands; includes winter storage.ii. To meet peak irrigation demands in excess of the average wastewater flow.

iii. To minimize the effects of disruptions in the operations of the treatment plant and irrigation system. Storage is used to provide insurance against the possibility of unsuitable reclaimed wastewater entering the irrigation system and to provide additional time to resolve temporary water quality problems.

Table 3: EFFLUENT QUALITY DATA FROM SELECTED ADVANCED WASTEWATER TREATMENT PLANTS IN CALIFORNIA1

Quality parameter (mg/l except as otherwise indicated)

Plant location

Long Beach

Los Coyotes

Pomona

Dublin San Ramon

City of Livermore

Simi Valley CSD

Biochemical oxygen demand, BOD5

5

9

4

2

3

4

Suspended solids

5

1

Total nitrogen

19

NH3-N

3.3

13.6

11.4

0.1

1.0

16.6

NO3-N

15.4

1.1

3

19.0

21.3

0.4

Org-N

2.2

2.5

1.3

0.2

2.6

2.3

Total phosphorus

Ortho-P

30.8

23.9

21.7

28.5

16.5

pH (unit)

6.8

7.1

Oil and grease

3.1

Total coliform bacteria, MPN/100 ml

2

4

Cations:
Ca

54

65

58

Mg

17

18

14

Na

186

177

109

168

178

K

16

18

12

Anions:
SO4

212

181

123

202

Cl

155

184

105

147

178

110

Electrical conductivity, dS/m

1.35

1.44

1.02

1.27

1.25

Total dissolved solids

867

827

570

585

Soluble sodium, %

63.2

59.2

51.7

Sodium adsorption ratio

5.53

4.94

3.37

4.6

5.7

Boron (B)

0.95

0.95

0.66

1.33

0.6

Alkalinity (CaCO3)

256

197

150

Total Hardness (CaCO3)

212

242

206

254

184

1Advanced wastewater treatment in these plants follows high rate secondary treatment and includes addition of chemical coagulants (alum + polymer) as necessary followed by filtration through sand or activated carbon granular medium filters.

0 replies

Leave a Reply

Want to join the discussion?
Feel free to contribute!

Leave a Reply